Jump to content
Arquitectura.pt


Pedro Barradas

Líderes de Equipa
  • Posts

    1670
  • Joined

  • Last visited

  • Days Won

    7

Posts posted by Pedro Barradas

  1. Porquê o Archicad

    Colegas, eu votei no Archicad, baseado na minha experiência.

    Eu uso o Autocad, para fazer as plantas em DWG, depois, no Archicad,
    insiro o desenho Cad, e a partir dái, desenvolvo o projecto.

    Realmente, consigo desenvolver melhor o projecto, com o Archicad.
    É mais rápido, e consegue-se ter melhor ideia de como será todo o projecto,
    mesmo a inserção no meio envolvente.

    Também uso o Envisioneer, mas não com tanta frequência.
    Faz uns renders muito bons, e em termos de filme do projecto,
    consegue surpreender em relação ao Archicad.

    É a minha opinião, claro.

    Cumps,
    procosta :)


    Realmente... é uma opinião contraproducente... 2D em Autocad, depois 2D/3D em ArchiCAD e visualização noutro...
  2. mD... tem muitas dúvidas, mas também não se decide pelo técnico que lhe vai projectar a casa... já está a começar por assuntos do fim... Quem ficar com a sua "conta", deverá lhe explicar as coisas, como elas são. Sabe, estes detalhes variam muito de zona para zona e de relacionamentos para relacionamentos (Dono Obra - Projectistas - Empreiteiro), a construção é como uma roleta russa... Outra coisinha... se o colega dos 3500€ não quer dar apoio em obra... é melhor arranjar alguém com mais disponibilidade... o preço parece-me justo.

  3. "Ninguem" tem dinheiro para pagar Fiscalização ou o Arquitecto ou o Engenheiro a tempo inteiro... ... normalmente o que acontece, é a visita obrigatória 1 vez por mês à obra, a dita Fiscalização e preeencher o Livro de Obra... Menos corrente, é a visita da Fiscalização 1 vez por semana (quando haja realmente avanços na obra).

    Creio já ter respondido parcialmente a estas questões noutro tópico, AQUI

    PS: Se fosse eu o cliente, teria pegado no Arquitecto dos 3500€, que me 2pareceu" sério, e depois pagava-lhe à hora os serviços complementares a desempenhar, como ospormenores necessáriso, ferragens, e outros assuntos...

    A Fiscalização é outra coisa, pode, neste momento, até ser da responsabilidade do técnico da Empresa construtora...

    Os papeis não se sobrepõem... Um técnico do Empreiteiro, teoricamente sempre em obra, na produção (defende os interesses do Empreiteiro). Um técnico do Dono de obra, teoricamente sempre em obra, na fiscalização (defende os interesses do Dono de obra). ...

    O Arquitecto... pode ou não, acumular na Fiscalização... pode apenas prestar Assistência Técnica, é diferente mD.... As responsabilidades são diferentes...

    mD... a sua obra é pequena... não justifica, de certeza, técnicos superiores a tempo inteiro.

    Na minha opinião, o ideal é partilhar a responsabilidade da Fiscalização entre duas formações distintas e complementares (Arquitecto + Engenheiro)

  4. Esses 3/4 alunos são os que obtém boas notas ?

    Bem tenho um primo (que trabalha numa área completamente diferente de arq, ) mas que tem uma politica interessante para a aquisição de pessoal para trabalhar

    É algo como isto:


    Medias de 10 a 13 - > maus alunos que se safaram por baixo na universidade, com probabilidade de ter uma boa vida social, mas com possibilidade de haver dificuldades na qualidade do trabalho

    Medias de 13 a 17 -> alunos regulares na universidade, com possibilidade de boa vida social, com conhecimento na media ideais para trabalhar

    Medias 17 a 20 -> alunos marrões que não tem vida social e que podem criar mau ambiente na empresa. pessoa acanhada pouco sociável. Trabalho pode ser optimo mas de resto nao.


    É bem verdade... Normalmente a entidade empregadora (empresas privadas) escolhe pelos do meio... a experiência (se houver alguma) e a entrevista é fundamental.
  5. Questão... e na verdade os trabalhos e o percurso do aluno, valem mesmo mais que isso? que esses 12, 13, 14... Olha, já agora, cá fora no mundo do trabalho... as médias acabam por não contar muito... PS: pelo q tenho visto, comparando com 10 anos atrás... os alunos estão mesmo maus... De turmas de 30, talvez se safem como BONS profissionais, 3/ 4 alunos...


  6. Afinal qual a finalidade ( se existe) de um arquitecto acompanhar a obra? E essa tarefa pode ou não ser feita pelo construtor ou fiscal de obras?
    mD


    O arquitecto tem que prestar SEMPRE, Assistência Técnica à obra... mas atenção esta assistência consubstância-se em resolver omissões de projecto e esclarecimentos sobre os mesmos que possam surgir durante a obra.
    PS: é um pouco dificil exigir este tipo de serviço, se depois não é contratado e/ ou executado o Projecto/os de Execução...

    A fiscalização de Obra, é outra coisa, é um serviço a contratar à parte (pelo Dono de Obra), pode ser ou não ao arquitecto (brevemente será chamado de "Director de Fiscalização de Obra"), será o técnico encarregue de verificar do cumprimento dos projectos licenciados e defenderá a qualidade de execução pelo Dono de Obra.

    O Empreiteiro Geral de Construção Civil, tem o seu técnico do Quadro, chamado Técnico de Obra (brevemente será chamado de "Director de Obra"), a este será encarregue a condução dos trabalhos de construção civil.

    É triste e não abona em nada, colegas meus ARQUITECTOS, eximirem-se do acompanhamento da obra... (atenção que isto são serviços cobrados à parte dos Projectos)
    Outro problema tem a haver com custos, estes reflectem-se nas propostas de honorários... o cliente foge... vai para o Desenhador, ou para o Eng.º ou para o ATAE...


    Agora respondendo à sua questão... Se prescindir do Arquitecto na obra, bem foi porque quis... ou talvez não queira, ou não precise dos seus préstimos, não lhe inspira confiança...

    Posso estar a ser imparcial... mas de certeza que o ARQUITECTO, consciente, com experiência e acima de tudo, INTERESSADO é uma mais valia... que talvez no final da obra, ainda lhe poupou uns "cobres"...

    Na minha empresa, seguimos as obras sempre de perto... umas mais que outras.... tudo depende da empatia com o cliente, da complexidade, do interesse do Empreiteiro... das retribuições envolvidas...
  7. Concrete: The Once & Future Liquid Stone
    Innovations

    Imagem colocada


    Courtesy of LiTraCon GmbH / National Building Museum
    Prototype wall of LiTraCon, one of three types of translucent concrete on display in the Liquid Stone exhibit.

    CoverStory -Go to other articles like this.

    At an estimated rate of 5 billion cubic yards per year, concrete is the second most widely consumed substance on earth, surpassed only by water. For that reason, we tend to take it for granted. We generally assume that concrete has changed little since Classical Romans used it in the construction of architectural marvels that ranged from aqueducts to the Pantheon.
    But in reality, concrete is a dynamic technology that has evolved greatly over the millennia and continues to evolve today, as evidenced by “Liquid Stone: New Architecture in Concrete,” on display at the National Building Museum through April 2006. The exhibition recognizes architects and engineers who have made innovative use of concrete’s versatility and strength over the years, and explores its future potential in light of three recent innovations: translucent, self-reinforcing, and self-consolidating concretes.
    “Liquid Stone is the latest exhibition in a series of shows we have done over the past six years on various building materials and their role in architecture and design and construction,” says Martin Moeller, the museum’s senior vice president for special projects and curator of the Liquid Stone exhibit.
    “In this case,” Moeller says, “we wanted to focus on contemporary architecture – very recent projects that use concrete in innovative ways – in order to help people understand that this is a material that has always been associated with experimentation and innovation from its earliest uses.”
    To take the exhibit one step further, he added, “We also wanted to talk about specific technologies that are now on the horizon – not really used very broadly in specific architectural applications, but that have the potential to rethink the fundamental way we think about buildings.”
    In some cases, the companies and people who developed these new products had existing designs and materials on hand for the museum to tap; in other cases, the museum worked proactively to produce samples specifically for the exhibition. That included commissioning a few architects to take on some of these new products and explore what their implications might be for the future of architectural design.
    “Translucent concrete was an obvious one from the start. Everyone reacted with equal excitement to that,” Moeller says. Three different varieties were included: Pixel Panels, LiTraCon (light transmitting concrete), and Translucent Panels.
    Bill Price, a professor at the University of Houston, developed Pixel Panels by embedding a fiber optic grid in concrete panels to carry light from one side to the other. Price first conceived of the idea of translucent concrete when he saw a model of a concert hall made using translucent materials, so that the model’s structure could be seen more easily. He started to wonder if the actual concert hall in question could be built so that it resembled the translucent model.
    For the exhibit, he used the panels to create a temple design he called the Pixel Chapel. He first rendered the simple space on a computer, then built a model to demonstrate what that space might look like by day, when sunlight squeezes in through tiny fibers in the concrete, and then at night, when artificial light from inside can be seen from the exterior.
    Another transparent concrete displayed in the Liquid Stone exhibit is called LiTraCon, an acronym for light transmitting concrete. Invented in 2001 by a Hungarian architect, Aron Losonczi, LiTraCon transmits light via thousands of embedded glass fibers that run parallel to each other. Shadows on the lighter side appear in sharp outline on the darker side, and even the colors survive, diminishing the sense of thickness and weight of a concrete wall. Because the fibers do not significantly reduce the compressive strength of the material, LiTraCon offers great potential for a variety of architectural applications.
    The third translucent concrete is the Translucent Panel, developed by Will Wittig, an assistant professor at the University of Detroit Mercy. Wittig’s process produces concrete panels that are one-tenth of an inch thick at their centers, thin enough to be translucent under direct light. His recipe calls for Portland cement and sand, reinforced with a small amount of chopped fiberglass.
    In addition to light, Liquid Stone explores innovations in the structural properties of concrete. A self-reinforcing concrete called Ductal is an ultra-high performance material manufactured by Lafarge North America. It contains organic or metallic fibers that make the finished product very dense and resistant to cracking and chipping. As a result, Ductal can be used to create very thin structural members without conventional steel reinforcement.
    Moeller says Ductal “fascinated me, largely because it defies several preconceptions of concrete.”
    “First of all, you think of concrete as being a rigid, hard, brittle substance,” Moeller says. “But Ductal – whose name itself is a play on the word ‘ductile’ – actually maintains a level of malleability. You can still bend this stuff even after it is fully set, and yet it doesn’t break because it is extremely rigid. It is so strong, in fact, that it can span great distances without any traditional steel reinforcement, which for 100 years has been a given of concrete construction. It also has a finish that looks like Corian; it is absolutely smooth, seemingly perfect, and it doesn’t look like anything you’d expect from concrete.”
    Vic Perry, vice president and general manager of Lafarge’s North American Ductal division, observes, “It’s not exactly concrete; it’s not ceramic, metal or steel or anything else.” And though Lafarge categorizes it as a high-performance, fiber-reinforced concrete,” Perry readily concedes, “It really is a new material.”
    Ductal has been deployed in a number of varying applications, including light-rail train stations, bridges, stairways and street furniture. It is also being used for architectural cladding, particularly retrofits, because it is so lightweight.
    “Architects are always trying to be creative in their solutions with slender, different-looking structures that are complex shapes, light, and low on maintenance,” Perry says. “When you present a material like this, you can mold into any shape and make it very thin because you don’t need the reinforcing steel in the structure. For instance, instead of making a shell four inches thick, with Ductal we can make it three-quarters of an inch thick and curve it into complex shapes. Once it’s finished, there’s no corrosion, and requires very little maintenance.”
    As for its looks, Perry adds that it is elastic enough to be cast in a mold to control surface texture. In addition, he says, “You can easily color it, plus it is fluid and self-placing like self-consolidating concrete. It has this unique combination of superior technical characteristics that makes it unlike anything else.”
    Of all the cutting-edge technologies on display in Liquid Stone, Moeller said, self-consolidating concrete was the trickiest to demonstrate.
    “I thought about that one long and hard,” he says, “because it’s a difficult concept for people to understand quickly, this idea of a substance that maintains great flowability, yet actually hardens to a similar strength and durability that you would expect from normal high-strength concrete. I wanted to pursue it nonetheless, because I think it’s going to become increasingly important and increasingly common.”
    Self-consolidating concrete is composed of optimized aggregates, cements, and admixtures, including superplasticizer, which keeps the mix highly fluid during the pouring process without compromising the cured material’s ultimate strength. It requires no vibration, and can therefore be used for difficult or constrained pours, such as those involving unusually dense reinforcing steel or narrow channels through which the concrete must flow. It can also be poured into intricate molds to produce finished concrete with a very fine surface texture, and it requires little or no rubbing or patching.
    Such advantages not only improve a finished appearance; they can also reduce costs for the contractor.
    “Self-consolidating concrete allows contractors to do what they’ve been trying to do for years,” says Jack Holley, vice president of QA & New Product Development at Lafarge North America, which produces a self-consolidating product called Agilia. “With Agilia, placements of very large volumes can require two people, whereas the same pour for traditional concrete would require eight to ten people with vibrators and shovels and rakes.”
    Holley said it was not just the latest generation of superplasticizers that gave the product its unique properties. “The selection and characterization of all the raw materials are critical, so they’re all compatible,” he says. “If they’re not compatible, you have to find ways to offset the incompatibility of either the mechanical gradings, the chemistries of the cements interacting with the plasticizers, or the whole matrix.”
    Currently, the most popular applications for self-consolidating concrete are in heavily reinforced sections of both new and rehabilitated structures, as well as for architectural surfaces requiring superior finishes.
    By one estimate, self-consolidating concrete will one day have 50% of the overall concrete market share. That day is a ways off though. The cost is still about 25% higher than standard mixes, and although the strength is similar, the industry is faced with the challenge of convincing design engineers and architects.
    “What’s interesting about the exhibit throughout,” says Moeller, “and not just in the ‘Future of Concrete’ section, is that architects have found ways to use concrete in these incredibly inventive forms and surfaces – things that really defy most people’s conception of the material. In almost every respect, they are doing things that are changing our attitudes about a material that is very nearly taken for granted.”
    Choosing which new technologies to include was one of the most difficult parts, he acknowledges. “In this case I tried to pick the ones where there were particularly interesting implications, ones that I thought could get architects excited about experimenting.”
  8. Boa.. é pena a construção não reflectir todos os pormenores dos renderings... Na vista Sul, por exemplo... O tijolo à vista é continuo, na zona das janelas... Provalvelmente pq o engenheiro colocou uma viga estre as duas... Também gostava de saber, já que essas devem ser as que confinam com a área de pé direito duplo das salas, como se vai fazer o controlo da incidência solar!!!, só com cortinados, com estores de rolo interiores...

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.